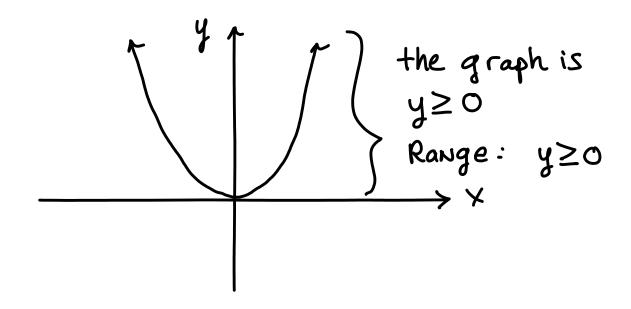
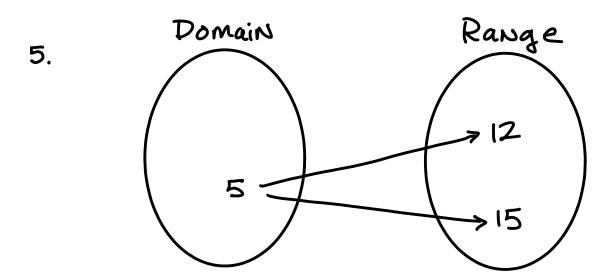


- 1. False
- 2. <u>Domain</u> the set of all values that can be input into a function
- 3. Yes the graph is of a function because it passes the VLT (Vertical Line Test)
- 4. Range of $f(x)=x^2$ $y \ge 0$ use a graph to find range





This is a relation <u>not</u> a function; it fails to be a function because each domain value can map to only one range value - 5 is mapping to both 12 and 15.

6. Yes, the graph of f(x)=2x+4 is a line and function (passes the VLT)

- 7. The VLT (Vertical Line Test) is a graphical method to determine if a relation is a function. The graph is a function if a vertical line will cross the graph once any place on the graph.
- 8. $f(x) + g(x) = \frac{3}{2}x 2$ $(2x+1) + (-\frac{1}{2}x - 3) = \frac{3}{2}x - 2$

9.
$$-3f(x) - g(x) = -11/2x$$

 $-3(2x+1) - (-6x-3) =$
 $-6x-3+6x+3 =$
 $-11/2x$

10.
$$2f(x)g(x) = -2x^2 - 13x - 6$$

 $2(2x+1)(-1/2x-3) =$
F.O.I.L.
 $2[-x^2 - 6x - 1/2x - 3] =$
 $2[-x^2 - \frac{13}{2}x - 3] =$

11.
$$f(g(x)) = -x - 5$$

 $f(-1/2x - 3) = 2(-1/2x - 3) + 1$
 $= -x - 6 + 1$
 $= -x - 5$

 $-2x^{2}-13x-6$

12.
$$g(f(x)) = -x - \frac{7}{2}$$
$$g(2x+1) = -\frac{1}{2}(2x+1) - 3$$
$$= -x - \frac{1}{2} - \frac{1}{2}$$
$$= -x - \frac{1}{2}$$

13.
$$f(x)=2x+4$$
 and $g(x)=-\frac{1}{2}x-2$
(Not inverses)

if $f(x)$ and $g(x)$ are inverses then

 $f(g(x)) = g(f(x)) = x$

check:

 $f(g(x)) = 2(-\frac{1}{2}x-2) + 4$
 $= -x-4+4$
 $= x$
 $g(f(x)) = -\frac{1}{2}(2x+4)-2$
 $= -x-2-2$
 $= -x-4$

g(f(x)) = not equal to x, therefore f(x) and g(x) are not inverses

14.
$$f(x) = 4x - 5$$
, $f'(x) = \frac{x}{4} + \frac{5}{4}$
 $y = 4x - 5$
 $x = 4y - 5$
 $4y - 5 = x$
 $4y = x + 5$
 $y = \frac{x + 5}{4} = \frac{x}{4} + \frac{5}{4}$
 $f'(x) = \frac{x}{4} + \frac{5}{4}$

15.
$$f(x) = \frac{1}{3}x + \frac{1}{3}x$$

$$f(x) = \frac{1}{3}x + 2$$
 $f(x) = 3x - 6$
 $f(x) = \frac{1}{3}x + 2$ $f(f(x)) = f(f(x)) = x$
 $f(f(x)) = \frac{1}{3}(3x - 6) + 2$
 $f(f(x)) = \frac$